Articoli

Microsoft ha introdotto una nuova generazione di agenti autonomi integrati in Dynamics 365, progettati per ottimizzare e rivoluzionare i processi aziendali attraverso l’uso avanzato dell’intelligenza artificiale (IA). Questi strumenti innovativi si pongono l’obiettivo di migliorare le operazioni in ambiti strategici come le vendite, il servizio clienti, la gestione finanziaria e la supply chain, automatizzando attività ripetitive e permettendo ai professionisti di focalizzarsi su compiti più complessi e a maggiore valore aggiunto.
Questi agenti sono progettati per aiutarti ad accelerare il time to value e sono configurati per scalare l’efficienza operativa e migliorare le esperienze dei clienti in tutti i ruoli e le funzioni.

Gli agenti autonomi: definizione e caratteristiche principali

Gli agenti autonomi rappresentano un’evoluzione rispetto ai tradizionali strumenti basati su IA. Essi sono in grado di operare in modo indipendente, gestendo processi aziendali complessi con un elevato livello di personalizzazione. A differenza degli assistenti digitali standard, questi agenti sono programmabili per acquisire competenze specifiche, quali l’automazione delle operazioni di gestione del catalogo prodotti o l’elaborazione degli ordini di vendita. L’obiettivo è duplice: da un lato, aumentare la produttività aziendale e, dall’altro, garantire una riduzione dei costi operativi attraverso l’ottimizzazione delle risorse.

Applicazioni pratiche degli agenti autonomi in Dynamics 365

Vendite

Gli agenti autonomi supportano i team di vendita aiutandoli a concentrarsi sulla creazione di relazioni con i clienti per concludere gli affari più velocemente. Ad esempio, il Sales Qualification Agent per Microsoft Dynamics 365 Sales libera i venditori da attività ripetitive, come la ricerca e la prioritizzazione dei lead in entrata, e crea email di vendita personalizzate per avviare conversazioni significative con i clienti.
Per le piccole e medie imprese, il Sales Order Agent per Microsoft Dynamics 365 Business Central automatizza il processo di acquisizione degli ordini, dall’inserimento alla conferma, interagendo con i clienti e catturando le loro preferenze, migliorando così l’efficienza complessiva del ciclo di vendita.

Operations

Gli agenti autonomi aiutano i team operativi a ottimizzare i processi aziendali e soddisfare la domanda dei clienti. In aree critiche come finanza, approvvigionamento e supply chain, gli agenti lavorano 24/7 per automatizzare processi complessi, ridurre i costi e accelerare le decisioni strategiche.
Il Supplier Communications Agent per Microsoft Dynamics 365 Supply Chain Management gestisce la collaborazione con i fornitori, conferma la consegna degli ordini e previene ritardi, permettendo agli specialisti degli acquisti di concentrarsi sulla resilienza complessiva della supply chain.
Ulteriori agenti includono:

  • Financial Reconciliation Agent per Microsoft 365 Copilot for Finance: semplifica e accelera i processi di chiusura finanziaria, migliorando la precisione della rendicontazione.
  • Account Reconciliation Agent per Microsoft Dynamics 365 Finance: automatizza l’abbinamento delle transazioni tra i registri, migliorando la visibilità del flusso di cassa.
  • Time and Expense Agent per Microsoft Dynamics 365 Project Operations: automatizza la gestione delle spese e dei tempi, garantendo progetti sempre in linea con il budget.

Servizi

Nel settore del servizio clienti, gli agenti autonomi trasformano le esperienze attraverso soluzioni self-service e assistite. I contact center, spesso ostacolati da processi manuali e dati frammentati, possono trarre vantaggio dagli agenti Customer Intent e Customer Knowledge Management.

  • Customer Intent Agent: Scopre continuamente nuovi intenti dai dati delle conversazioni con i clienti, migliorando il servizio self-service.
  • Customer Knowledge Management Agent: Aggiorna automaticamente la knowledge base analizzando note, trascrizioni e dati dei casi per garantire informazioni accurate e aggiornate.

Altri agenti rilevanti includono:

  • Case Management Agent: Automatizza l’intero ciclo di vita dei casi, dalla creazione alla chiusura, riducendo i tempi di gestione.
  • Scheduling Operations Agent: Ottimizza le pianificazioni per i tecnici sul campo, gestendo imprevisti come ritardi o cancellazioni.

Personalizzazione avanzata con Copilot Studio

Microsoft Copilot è il tuo assistente AI, lavora per te, e Copilot Studio ti consente di creare, gestire e connettere facilmente gli agenti a Copilot. Pensa agli agenti come alle nuove app per un mondo basato sull’AI.
Per rispondere alle esigenze specifiche di ogni organizzazione, Microsoft mette a disposizione Copilot Studio, una piattaforma low-code pensata per la creazione e gestione di agenti autonomi personalizzati. Grazie a questa soluzione, le aziende possono configurare agenti in grado di interagire con database aziendali, sistemi CRM e altre fonti di dati strutturati. Questo approccio consente non solo di risolvere problematiche specifiche, ma anche di generare insight strategici per la gestione aziendale.

Vantaggi strategici degli agenti autonomi

L’adozione degli agenti autonomi all’interno di Dynamics 365 offre numerosi benefici che si riflettono su diversi aspetti della gestione aziendale:

  • Efficienza operativa: Automatizzando le attività ripetitive, i dipendenti possono dedicare il loro tempo a iniziative più strategiche e creative.
  • Customer experience migliorata: Gli agenti rispondono rapidamente e con precisione alle richieste, offrendo un servizio personalizzato e altamente soddisfacente.
  • Ottimizzazione dei flussi di lavoro: L’integrazione di agenti autonomi con i processi aziendali esistenti garantisce una maggiore fluidità operativa e riduce il margine di errore.

Gli agenti autonomi rappresentano un pilastro fondamentale nella trasformazione digitale delle imprese moderne. Grazie alle soluzioni avanzate di Microsoft Dynamics 365, le organizzazioni possono sfruttare strumenti altamente personalizzabili per automatizzare processi critici, migliorare l’efficienza globale e rafforzare la competitività nel mercato.

Per un approfondimento sulle potenzialità di questi agenti, guarda il video ufficiale di Microsoft:

Fonti: Transform work with autonomous agents across your business processes

New autonomous agents scale your team like never before

Sblocca il potenziale della tua azienda con Dynamics 365, il portafoglio di applicazioni intelligenti che consente a tutti di fornire eccellenza operativa e creare esperienze più coinvolgenti per i clienti.

 

Team Marketing

 

Al Microsoft AI Tour, il CEO Microsoft Satya Nadella presenta il potere trasformativo dell’intelligenza artificiale per la crescita dell’Italia

Presentati nuovi progetti di innovazione con le organizzazioni italiane che stanno beneficiando dell’AI

Il 23 ottobre 2024, il Microsoft AI Tour ha fatto tappa a Roma, dove Satya Nadella, CEO di Microsoft, ha condiviso la visione aziendale sull’uso dell’intelligenza artificiale per la crescita dell’Italia. L’evento ha messo in luce come il cloud e l’AI generativa stiano trasformando la produttività e la competitività delle organizzazioni italiane, contribuendo a un’economia digitale più forte.

Durante il suo intervento, Nadella ha sottolineato l’importanza dell’adozione responsabile e sicura delle tecnologie AI per garantire che tutti possano beneficiare delle opportunità offerte. Ha spiegato come l’AI stia creando nuove possibilità per migliorare la produttività, aumentare la creatività e rafforzare la competitività delle aziende italiane nel mercato globale.

Copilot Agents in Copilot Studio

Microsoft ha annunciato la disponibilità dell’anteprima pubblica dei Copilot Agents nell’ambito di Copilot Studio. I Copilot Agent sono come delle nuove app per un mondo alimentato dall’AI che lavorano per conto di un individuo, di un team o di una funzione aziendale per eseguire e orchestrare determinati processi. Copilot è il modo in cui si interagisce con questi agenti, che si occuperanno delle operazioni di routine a scarso valore aggiunto. Microsoft ha inoltre presentato dieci nuovi agenti all’interno di Microsoft Dynamics 365, che aiuteranno in particolar modo i team di lavoro in ambito sales, finance e supply chain.

“Siamo impegnati a sostenere la trasformazione dell’AI in Italia e a garantire che ne beneficino tutti,” ha dichiarato Satya Nadella, Presidente e CEO di Microsoft. “Gli investimenti che abbiamo fatto all’inizio di questo mese nell’infrastruttura cloud e AI, insieme alla formazione sulle competenze AI, aiuteranno a garantire un ampio accesso alla tecnologia necessaria perché gli italiani e l’economia italiana prosperino in questa era dell’IA. È fantastico vedere come tante organizzazioni italiane in ogni settore stiano già utilizzando le nostre piattaforme e strumenti di AI per innovare.”

L’Italia come hub strategico per l’Europa, il Mediterraneo e il Nord Africa nella diffusione dell’innovazione digitale

La tappa italiana dell’AI Tour fa seguito all’importante investimento di Microsoft in Italia appena annunciato – pari a 4,3 miliardi di euro nei prossimi due anni – per espandere la sua infrastruttura di data center hyperscale cloud e di Intelligenza Artificiale con l’obiettivo di aiutare il Paese a massimizzare le opportunità dell’AI, oltre a un piano di formazione sulle competenze digitali  per oltre 1 milione di Italiani entro la fine del 2025. Con questo investimento, la Cloud Region italiana diventerà una delle più grandi regioni data center di Microsoft in Europa e svolgerà un ruolo cruciale di hub non solo per l’Italia ma anche per il Mediterraneo e il Nord Africa.

L’AI rappresenta un’opportunità di trasformazione e di crescita economica senza precedenti per l’Italia. Un recente studio sviluppato da Microsoft insieme a TEHA group ha calcolato che un’adozione pervasiva dell’AI generativa potrebbe aumentare il PIL annuo dell’Italia fino a 312 miliardi di euro nei prossimi 15 anni, pari al 18,2%. Di questi, le PMI potrebbero beneficiare di un aumento di 122 miliardi di euro di valore aggiunto. Secondo lo studio, le aziende italiane stanno registrando anche guadagni tangibili di produttività grazie all’AI generativa. Oggi il 47% delle aziende che utilizzano soluzioni di intelligenza artificiale segnala un aumento della produttività di oltre il 5%, mentre il 74% ha registrato un aumento della produttività di oltre l’1%. Questi incrementi sono particolarmente significativi, considerando che la crescita complessiva della produttività che l’Italia ha registrato negli ultimi vent’anni è pari al +1,6%.

L’innovazione digitale dell’AI nelle organizzazioni italiane

Durante la sua visita, Satya Nadella ha incontrato alcune delle organizzazioni che stanno guidando l’adozione dell’AI in Italia, traendone il massimo beneficio in termini di crescita, produttività e nuovi servizi. Ha evidenziato come le organizzazioni locali, grazie a partnership strategiche, stiano innovando in settori pubblici e privati chiave per il Paese come il manifatturiero, la sanità, la Pubblica Amministrazione e le eccellenze del Made-in-Italy.

Leggi la notizia ufficiale

Team Marketing

 

ERP e CRM trasformati dall’AI

ERP e CRM trasformati dall’Intelligenza Artificiale

Durante un anno di lavoro, solare o fiscale, le aziende, piccole o grandi che siano, valutano se i sistemi informatici adottati siano in grado di generare valore secondo le aspettative.
I moderni sistemi di pianificazione delle risorse aziendali (ERP) e di gestione delle relazioni con i clienti (CRM) e rientrano proprio tra gli strumenti che devono essere adeguati alle necessità delle aziende.

Se nella tua azienda avete già adottato, o prevedete di adottare, sistemi ERP e CRM basati sull’intelligenza artificiale, la trasformazione, l’innovazione e l’efficienza aziendale possono essere favorite in tre modi:

  • Semplificare le operazioni: trasformare i sistemi ERP e CRM da applicazioni isolate in un ecosistema unificato e automatizzato, migliorando la collaborazione tra i team e la condivisione dei dati.
  • Prendere decisioni approfondite: fornire a tutti i dipendenti un’analisi del linguaggio naturale basata sull’intelligenza artificiale, consentendo loro di generare rapidamente le informazioni necessarie per prendere decisioni informate e identificare nuove opportunità di mercato.
  • Migliorare l’esperienza dei clienti e dei dipendenti: personalizzare le interazioni con i clienti utilizzando profili cliente a 360 gradi.

È giunto il momento di pensare all’AI come a qualcosa di molto più di uno strumento tecnologico. È un imperativo strategico in questa nuova era tecnologica. L’adozione dell’intelligenza artificiale negli ERP per il Finance, la Supply Chain e le Operations e nei CRM per il marketing, le vendite e l’assistenza è fondamentale per competere e andare avanti.

2023: un anno di trasformazione per l’AI nei sistemi CRM ed ERP

Guardando indietro, il 2023 è stato un anno di svolta per gli ERP e i CRM. Microsoft ha implementato nuovi strumenti e funzionalità basati sull’intelligenza artificiale nelle sue applicazioni ERP e CRM. Tra gli altri risultati, Microsoft ha lanciato e continua a migliorare Microsoft Copilot for Dynamics 365il primo copilota al mondo creato in modo nativo per i sistemi CRM ed ERP.

Tendenze e approfondimenti per CRM AI e ERP AI nel 2024

Tutti i segnali indicano che negli anni a venire le aziende continueranno a trovare modi nuovi e innovativi per utilizzare l’AI nei sistemi ERP e CRM.
In una recente ricerca, che esamina il modo in cui l’intelligenza artificiale sta trasformando il lavoro, Microsoft ha intervistato centinaia di primi utenti dell’intelligenza artificiale generativa. I risultati hanno mostrato che il 70% degli utenti ha affermato che l’AI generativa li ha aiutati a essere più produttivi e il 68% ha affermato che l’AI ha migliorato la qualità del lavoro. Inoltre, il 64% dei sales intervistati ha affermato che l’AI generativa li ha aiutati a personalizzare meglio il coinvolgimento dei clienti e il 67% ha affermato che l’uso dell’AI ha liberato tempo che è stato dedicato ai clienti.

Guardando al futuro, si prevede che lo slancio che si è verificato nel 2023 per l’AI business proseguirà ancora nel 2024. Infatti, IDC prevede che la spesa globale per le soluzioni di intelligenza artificiale raggiungerà più di 500 miliardi di dollari entro il 2027. 

Alcune delle tendenze specifiche dell’AI da tenere d’occhio nel 2024 includono:

  • Espansione di strategie e tattiche basate sui dati. Interfacce user-friendly con funzionalità copilot e dashboard personalizzabili con visualizzazioni dei dati consentiranno ai dipendenti di ogni reparto di accedere alle informazioni generate dall’intelligenza artificiale e contestualizzarle. Con le informazioni di cui hanno bisogno a portata di mano, i dipendenti prenderanno decisioni più rapide e intelligenti.
  • Prioritizzazione della personalizzazione e delle esperienze utente. Le strategie predittive di vendita e marketing matureranno con l’assistenza dell’intelligenza artificiale nella previsione dei comportamenti e delle preferenze dei clienti e nella mappatura dei percorsi dei clienti, aiutando i marketer a essere più creativi e i venditori a interagire meglio con i clienti
  • Maggiore efficienza grazie all’intelligenza artificiale e alle tecnologie cloud. La combinazione delle funzionalità degli strumenti CRM ed ERP basati sull’intelligenza artificiale con piattaforme cloud scalabili e flessibili in grado di archiviare enormi quantità di dati favorirà l’efficienza dei lavoratori. Inoltre, le organizzazioni identificheranno sempre più spesso nuovi casi d’uso per l’automazione, quindi li costruiranno e li distribuiranno rapidamente in un ambiente cloud. Ciò aumenterà ulteriormente la produttività della forza lavoro e l’accuratezza dei processi.
  • Maggiore controllo dell’etica dell’AI. L’innovazione responsabile richiede alle organizzazioni di aderire ai principi etici dell’AI, che possono richiedere adeguamenti alle operazioni aziendali e alle strategie di crescita. Per guidare lo sviluppo e l’uso etico dell’intelligenza artificiale, Microsoft ha definito i principi dell’intelligenza artificiale responsabile. Aiuta anche a far progredire la politica, la ricerca e l’ingegneria dell’AI.

Best practice per l’adozione dell’AI nel 2024

Per guidare la trasformazione con l’intelligenza artificiale nei sistemi ERP e CRM, è necessario pianificare e implementare attentamente un approccio che funzioni al meglio per la propria organizzazione.
Queste quattro best practice possono essere una buona guida per l’adozione dell’AI in azienda:

  • Implementazione strategica: Formulare una strategia di implementazione dell’AI a lungo termine per responsabilizzare i dipendenti e ottimizzare i processi aziendali, enfatizzando la cultura basata sui dati, lo sviluppo di competenze pertinenti e strumenti di AI scalabili e intuitivi nei sistemi ERP e CRM.
  • Adozione etica: Rispettare le linee guida etiche in evoluzione, a partire dall’automazione dei processi potenziata dall’intelligenza artificiale e progredendo verso la creazione di valore innovativo, garantendo al contempo che la tua organizzazione sia iperconnessa.
  • Qualità e sicurezza dei dati: Mantenere elevati standard di integrità e sicurezza dei dati, controllando regolarmente i dati di addestramento dell’AI per evitare distorsioni e garantire l’affidabilità.
  • Allineamento con gli obiettivi aziendali: Allineare le iniziative di AI agli obiettivi strategici, misurandone l’impatto sui risultati aziendali e gestendo in modo proattivo eventuali potenziali effetti negativi sugli stakeholder.

Una volta adottata l’AI, è importante non perdere di vista l’importanza della collaborazione tra uomo e AI: l’utilizzo dell’AI può aumentare, non sostituire, le competenze umane e il processo decisionale in tutta l’organizzazione. Non dimentichiamo, poi, che, anche se molte persone apprezzano i flussi di lavoro automatizzati, le informazioni e le raccomandazioni generate dall’intelligenza artificiale, essa non è infallibile. Il successo di un’azienda dipende sempre dalle persone che prendono decisioni intelligenti e strategiche.

L’importanza di abbracciare l’AI nel business

Esistono immense opportunità per le organizzazioni di tutti i settori di utilizzare sistemi ERP e CRM basati sull’intelligenza artificiale per accelerare la trasformazione, l’innovazione e l’efficienza del business. Secondo Forrester Research, le aziende che investono in iniziative di intelligenza artificiale aumenteranno la produttività e la risoluzione creativa dei problemi del 50% nel 2024. Tuttavia, senza leader pienamente coinvolti nella pianificazione e nell’implementazione dell’AI, molte organizzazioni faranno fatica a realizzare il pieno potenziale dell’AI.

È fondamentale una leadership che dia priorità e sostenga l’AI nelle tue strategie aziendali per il 2024. Questa leadership deve essere lungimirante, poiché l’adozione dell’AI richiede cambiamenti che si estendono a tutti i ruoli e le funzioni. Ma deve anche essere molto pratica, per gestire investimenti e azioni mirate, e adattabile, per rimanere aperta e flessibile al cambiamento delle strategie e delle tattiche organizzative man mano che le tecnologie di intelligenza artificiale si evolvono.

Collabora con un leader nell’innovazione dell’AI

Indipendentemente dal punto in cui si trovi la tua organizzazione nel percorso di adozione dell’intelligenza artificiale, fai il passo successivo scoprendo di più su come funziona l’intelligenza artificiale con Microsoft Dynamics 365, una suite completa e personalizzabile di applicazioni ERP e CRM.

 

Microsoft Dynamics 365 è una piattaforma completa e intelligente, in cloud/on-premise/Saas, che unisce le potenti tecnologie Microsoft, sfruttando le funzionalità del CRM e del sistema ERP Dynamics.

Team Marketing

 

L’IA nel mondo aziendale: vantaggi, settori economici, ottimizzazione di processi aziendali

Nel mondo dinamico e sfidante della moda, l’innovazione rappresenta la chiave per mantenere un vantaggio competitivo. Una delle innovazioni più promettenti che sta trasformando radicalmente l’intera industria è l’Intelligenza Artificiale (AI).

In questo articolo, esploreremo il concetto di AI, individuando i settori economici e le aree aziendali che ne possono trarre i massimi benefici. Inoltre, ci concentreremo sulle soluzioni offerte da Microsoft, con particolare attenzione a Dynamics 365 Business Central, e su come queste tecnologie possano essere impiegate in maniera strategica per sfruttare appieno il potenziale dell’IA nell’ambito della moda.

I settori economici influenzati dalle innovazioni dell’AI

Secondo una ricerca effettuata da “The European House Ambrosetti” in partnership con Microsoft, l’AI generativa avrà un impatto sulla maggior parte dei settori economici e processi aziendali.
“Non è di fatto più una questione di se, ma di “quanto” l’intelligenza artificiale sarà influente”.

In base ai risultati della survey, i principali settori economici destinati a essere influenzati dall’AI includono il settore finanziario, l’ICT, il mondo della moda, l’editoria e i servizi alle imprese.

I processi aziendali trasformati dall’Intelligenza Artificiale

Per il 70% degli intervistati l’utilizzo di questa tecnologia porterà ad un aumento della produttività e le funzioni aziendali a trarne maggiori benefici saranno oltre a quella ICT, la progettazione e il design, il knowledge management e il marketing.

I vantaggi in azienda dell’introduzione di AI

In linea con la ricerca accademica, la survey ha rivelato che i principali vantaggi dell’AI potrebbero interessare le professioni che svolgono principalmente compiti ripetitivi. Tuttavia, è importante sottolineare che l’AI generativa è in grado di supportare anche mansioni che richiedono competenze creative, decisionali e strategiche.

Benefici attuali e prospettici
Sebbene sia ancora nelle fasi iniziali e sperimentali, l’AI sta già dimostrando di offrire vantaggi tangibili alle aziende. Guardando agli esempi di utilizzo raccolti nei primi anni di adozione di questa tecnologia, è evidente che le imprese stanno ottenendo:

  • Ottimizzazione delle risorse: L’IA analizza dati complessi in tempi rapidi, consentendo decisioni basate su dati accurati e una gestione ottimale delle risorse.
  • Semplicità nei flussi dei dati: L’IA organizza dati caotici in flussi gestibili, migliorando l’accesso e la comprensione delle informazioni aziendali.
  • Automazione dei flussi di lavoro: L’IA automatizza le attività operative e compiti ripetitivi, consentendo ai dipendenti di concentrarsi su compiti creativi e strategici.
  • Snellimento dei processi: L’IA ottimizza i processi aziendali, riducendo inefficienze e migliorando la produttività.
  • Ottimizzazione dei processi ripetitivi: I processi aziendali ripetitivi diventano più efficienti grazie all’IA, garantendo coerenza e risparmio di tempo.
  • Miglioramento del servizio clienti: Gli algoritmi di Intelligenza Artificiale analizzano i dati dei clienti per creare esperienze personalizzate, aumentando la soddisfazione e la fedeltà del cliente.
  • Predizione delle sfide aziendali: L’analisi predittiva, combinata all’IA, consente di anticipare sfide potenziali, consentendo alle aziende di essere proattive anziché reattive.
  • Miglioramento del processo decisionale: I dati generati dall’IA supportano i processi decisionali, migliorandone precisione e tempestività.

AI e Microsoft

Microsoft ha compiuto un passo avanti straordinario nell’ambito dell’Intelligenza Artificiale (AI) grazie all’acquisizione di OpenAI, un vero pioniere nel campo dell’IA. Questa collaborazione ha portato alla creazione di soluzioni all’avanguardia che mettono l’Intelligenza Artificiale al servizio dei processi aziendali.
Tra le iniziative di spicco, Microsoft ha integrato soluzioni di AI direttamente nei popolari strumenti di Office che utilizziamo quotidianamente. Inoltre, ha lanciato “Microsoft Dynamics 365 Copilot,” un assistente AI completamente integrato nelle soluzioni CRM ed ERP.

AI in Microsoft Dynamics 365 Business Central: Trasformazione dei Processi Aziendali

In particolare, Dynamics 365 Business Central offre quattro funzionalità avanzate basate sull’IA, che possono essere applicate al settore fashion:

  1. Analisi dei flussi di cassa: Le previsioni del cashflow si avvalgono dell’Intelligenza Artificiale attraverso Copilot, per creare analisi più complete e precise.
  2. Analisi delle previsioni dei ritardi di pagamento: Copilot mira a ridurre i crediti in sospeso e a ottimizzare la strategia di recupero dei crediti prevedendo in anticipo se le fatture di vendita verranno pagate puntualmente. Questo permette di adattare i termini e i metodi di pagamento in base alle previsioni di ritardo.
  3. Previsioni di vendite e gestione del magazzino: Questa funzionalità consente di prevedere le vendite future, utilizzando dati storici, e di ottenere una chiara visione delle scorte previste in esaurimento. Sulla base di queste previsioni, è possibile generare automaticamente le richieste di approvvigionamento per i fornitori, risparmiando tempo prezioso.
  4. Creazione di testi di marketing basati sull’IA: Copilot offre assistenza basata sull’Intelligenza Artificiale ai professionisti di Business Central responsabili della creazione di testi di marketing per i prodotti. Questa funzione genera rapidamente descrizioni di prodotti accattivanti utilizzando attributi come colore, materiale e dimensioni, per le piattaforme di e-commerce. Inoltre, è possibile personalizzare ulteriormente queste descrizioni selezionando il tono di voce, il formato e la lunghezza desiderati.

Grazie a queste soluzioni all’avanguardia, Microsoft Dynamics 365 Business Central sta guidando la trasformazione digitale delle aziende, ottimizzando processi, migliorando la produttività e consentendo una gestione più intelligente delle risorse aziendali.

In Var Prime siamo esperti nell’implementazione di Business Central per le aziende Fashion e Textile, e crediamo fortemente nell’importanza di adottare tecnologie all’avanguardia per rimanere competitivi in un settore in continua evoluzione.

 

Dynamics365 Business Central con l’addon PRIME365 Fashion è la soluzione ERP tailor made per le aziende fashion. Scegli la massima efficienza e competitività per il tuo business nel mondo della moda.

Microsoft Dynamics 365 Business Central Consultant

 

Fashion

Con una fase di digitalizzazione accelerata dagli eventi sanitari dell’ultimo anno e mezzo, anche il settore del Fashion ha dovuto fare i conti col proprio stato di maturità digitale trovandosi davanti un pubblico e un mercato diverso da quello pre-pandemico con un’attenzione sempre più forte alla sostenibilità.

In questo contesto Var Group ha integrato la propria natura digitale e la storica collaborazione con le realtà del Fashion, arricchendola con le soluzioni che uniscono AItecnologie Cloud e blockchain in grado di digitalizzare i processi, migliorare l’esperienza, ma soprattutto, sposare la crescente richiesta di sostenibilità del settore.

Una richiesta che determina un’adozione sempre maggiore di tecnologie in grado di identificare i livelli di sostenibilità dei singoli materiali e dunque dei prodotti finali accrescendo la consapevolezza dell’azienda e del consumatore scongiurando il rischio di greenwashing.

In uno scenario in cui il cliente è al centro della strategia di ingaggio e dove l’estrema personalizzazione delle proposte è sempre più spinta grazie ad innovativi algoritmi in grado di creare campagne ad hoc, l’AI offre anche un valido supporto nel migliorare notevolmente le tecniche di analisi e definizione delle preferenze cambiando anche parte del retail.

L’intelligenza artificiale può anche svolgere un ruolo chiave nell’assicurare ai retailer di disporre di riserve sufficienti degli articoli più richiesti creando un corretto bilanciamento nei canali e sposando una politica Zero Waste.

Nei casi migliori, tali strumenti consentono ai rivenditori di ridurre gli errori di previsione fino al 50%, riducendo allo stesso tempo l’inventario dal 20% al 50%. Oltre a diminuire in modo sensibile il time to market per il lancio di nuovi prodotti, sempre garantendo tracciabilità e sostenibilità ed incrociando le esigenze dei clienti con un approccio sempre più su misura.

Il futuro della moda? Probabilmente sarà caratterizzato da uno scenario scevro dalla crudeltà sugli animali, dall’esaurimento delle risorse e dall’inquinamento globale, sempre più orientato alla previsione e alla centralità del dato.

Nascono da queste esigenze le soluzioni di rendering, in grado di simulare nei minimi dettagli la resa finale di un abito così come di una casa o di uno yacht, o ancora il virtual try on, in grado di mostrare un capo indossato sulle forme del consumatore finale, prima ancora che venga prodotto.

Il futuro della moda dunque non può prescindere da:

  • Blockchain per garantire tracciabilità ed integrare distretti e filiere
  • Cloud come piattaforma per abilitare omni canalità e real time integration tra tutti i sistemi
  • Data & AI per analizzare e prevedere trend sostenibili e prodotti disegnati per il consumatore

In questa nuova dinamica le tecnologie cloud risultano uno strumento fondamentale per abilitare innovazione di processo e di prodotto come anche nei rapporti con il nuovo consumatore sempre più connesso e sensibile alle tematiche dell’ambiente e della qualità.

PRIME365 Fashion Suite è una suite di prodotti basati su tecnologie Microsoft Dynamics ed Azure, disegnati per le aziende della moda in grado di accompagnarle nel percorso della digital transformation.

Team Marketing

Integrare i processi per ridurre il time to market nel retail

Che cos’è il time to market se non la misurazione del tempo e della qualità delle risposte che l’azienda dà alle esigenze espresse dal mercato? Visto in questi termini – ovvero non come una segmentazione di procedure e attività, ma come un unico parametro, migliorando il quale l’impresa riesce a guadagnare vantaggio competitivo – anche nel mondo retail il time to market può essere diminuito attraverso l’ottimizzazione di tutti i processi in un unico flusso. Perché è governando quel flusso, conoscendo a fondo come si sviluppano le attività in tutta la filiera ed integrandone gli stakeholder, che si abbattono i costi e si accrescono performance di business e soddisfazione dei clienti.

Permettere a tutte le piattaforme di dialogare con ciascun anello della catena

Belle parole, ma all’atto pratico cosa bisogna fare? Occorre prima di tutto installare dei connettori che mettano in comunicazione con i sistemi aziendali ciascun anello della catena, dal fornitore al cliente passando per tutti gli elementi intermedi disposti in parallelo sui diversi canali di vendita. Che si tratti di corner shop o negozi multimarca, o ancora di un’insegna vera e propria o di e-commerce, ogni punto di contatto con i clienti deve avere la facoltà di dialogare con la filiera in maniera continua e trasparente.

Questa necessità si unisce all’esigenza di soddisfare il cliente che si aspetta un’esperienza d’acquisto coerente e omogenea, a prescindere dal luogo – fisico o virtuale – in cui trova il prodotto. Solo se queste due istanze convergono, il time to market risulterà fluido.

Sono tipicamente l’ERP (Enterprise Resource Management), il CRM (Customer Relationship Management) e la BI (Business Intelligence) le piattaforme di base su cui vanno connessi tutti gli attori della filiera. Ciascuno al suo sistema, naturalmente, ma creando delle interconnessioni tra i database e le applicazioni in modo da consentire la condivisione e lo scambio dei dati utili a descrivere i vari processi e, in ultima istanza, con una visione d’insieme, il flusso del time to market. A questi sistemi tradizionali poi vengono in aiuto nuove tecnologie con l’Intelligenza Artificiale e l’IoT (Internet of Things), che consentono ancora meglio di ottimizzare la gestione delle informazioni ed automatizzare i processi di base più semplici e ripetitivi.

Individuare cause ed effetti per agire tempestivamente sulla filiera

Conoscere in tempo reale come si sta comportando, per esempio, la catena logistica per l’approvvigionamento dei prodotti o delle materie prime è indispensabile se si vogliono pianificare campagne di instant marketing capaci non solo di assecondare i trend di un determinato mercato, ma anche di rispondere con tempestività a bisogni espressi dai clienti in un dato momento e in un dato luogo. Quest’input, che può arrivare dall’analisi delle conversazioni e dei comportamenti su web e social network o anche direttamente dal negozio fisico, attraverso dati di vendita che evidenziano fenomeni da tenere d’occhio, trova riscontro nell’effettiva disponibilità di magazzino o nelle previsioni – accurate – sulla capacità della supply chain di rispettare le consegne.

Ma questa è semplicemente ordinaria amministrazione. Agire sul piano strategico vuol dire fare un passo in più: nel momento in cui raccoglie ed elabora i dati provenienti da tutte le fonti, il sistema di Business Intelligence è infatti in grado di individuare colli di bottiglia, potenziali criticità e soprattutto opportunità per velocizzare l’intera filiera, riconducendo cause ed effetti che a “occhio nudo” sarebbero impossibili da collegare. È sempre grazie all’integrazione dei processi con l’evoluzione del mercato e con i comportamenti dei consumatori che diventa possibile dare vita a simulazioni digitali, sia per mettere alla prova ipotesi di correzione della catena logistica o di procedure obsolete, sia specialmente per verificare l’impatto e la sostenibilità di nuovi modelli di business. Ancora una volta mettendo insieme causa ed effetto ogni volta che si decide di modificare un parametro. Insomma, un modo completamente nuovo di considerare, gestire e indirizzare il flusso del time to market.

PRIME365 Retail Suite è una suite innovativa di prodotti basati su tecnologie Microsoft, studiati per accompagnare le aziende del settore retail nel percorso di trasformazione digitale.

Team Marketing

Retail e segmentazione clienti: conoscere i comportamenti dei clienti

L’omnicanalità è una vera e propria galassia di touch point. Per ottimizzarli è necessario conoscere comportamenti e preferenze di ciascun individuo. Ecco perché è fondamentale riconciliare tutte le informazioni che il Marketing ha a disposizione sul proprio target.

Che i clienti, a maggior ragione nel mondo del fashion, non siano tutti uguali è risaputo. Ma attenzione: non è affatto un assunto da dare per scontato, bensì una consapevolezza acquisita faticosamente dal Marketing in anni di evoluzione di strategie e approcci al mercato, soprattutto di segmentazione del target. Eppure, nonostante siamo tutti d’accordo nel dirlo, molti ancora non riescono a tradurre in pratica questo concetto. È chiaro: il fashion retail è dovuto scendere a molti compromessi per raggiungere una sostenibilità economica nei modelli di business; un servizio tailor made, nei confronti di ciascun consumatore, è stato per decenni semplicemente impensabile. Ora che però le tecnologie digitali permettono da una parte di personalizzare l’interazione con gli individui su tutti i canali e dall’altra di ottimizzare la catena logistica per dare vita a offerte in real time (o quasi), sfruttando stagionalità e trend che arrivano direttamente dalle passerelle, l’impensabile è diventato fattibile. E, di conseguenza, necessario, se si vuole sempre essere un passo avanti rispetto alla concorrenza e mantenere il vantaggio competitivo.

Dalla relazione al Customer Journey: comprendere le esigenze dei clienti per soddisfarle

La segmentazione è dunque più che mai importante. Definire le caratteristiche dei clienti già acquisiti, ma anche quelle dei visitatori anonimi (del sito Internet come dello store fisico), rappresenta infatti la premessa per la costruzione di una relazione duratura che possa gradualmente diventare la cornice di una serie di Customer Journey efficaci. Conoscere le persone significa comprenderne le esigenze, provare a soddisfarle quando e dove occorre davvero vuol dire conquistarsi la loro fedeltà. Dunque sì alla segmentazione, ma con una precisione: se fino a qualche anno fa si faceva affidamento sui cluster costruiti in base a parametri socio-economici e demografici, oggi la segmentazione esprime la massima efficacia nel momento in cui descrive interessi e soprattutto comportamenti. Meglio ancora se contestualizzati. Questo introduce un elemento di grande complessità nello svolgimento delle analisi e nella formulazione di ipotesi dei diversi profili. E implica un lavoro costante di aggiornamento dei metodi di raccolta delle informazioni, della loro classificazione e soprattutto dei database. Come far confluire i dati dai diversi touch point attivati? POS, carte fedeltà, visite sul sito Internet, acquisti tramite app, operazioni promozionali e partnership con altri brand: l’omnicanalità è una vera galassia di punti d’accesso all’offerta e ogni consumatore vi si avvicina a modo suo.

Conoscere il cliente permette di massimizzare il valore di ciascun touch point

Unificare la visione che si ha sul cliente, a prescindere dal modo in cui si avvicina a un touch point, vuol dire per l’appunto segmentare il mercato in base ai comportamenti, con l’obiettivo poi di riconciliare profili univoci che aiutino il Marketing a indirizzare con sempre maggiore precisione l’offerta, anche al variare di altri parametri. Il Customer Journey di una stessa persona cambia radicalmente a seconda che l’individuo sia spinto verso il brand perché in cerca di novità o allettato dai saldi; è fondamentale riuscire a prevedere, di volta in volta, il tipo di approccio valutando il modo in cui si sono svolte le interazioni passate.

Chief Marketing Officer e Sales Director, oggi, possono farlo attingendo alle risorse delle piattaforme analitiche che convogliano i dati generati dai touch point nei CRM, incrociando e integrando le informazioni per dare vita a segmenti e profili accurati. Automatizzando il sistema, diventa possibile creare un meccanismo di alert e notifiche con cui, in un’ottica di Unified Commerce, la piattaforma è in grado di riconoscere quando comincia un Customer Journey peculiare e di indirizzarlo in base al profilo dell’utente. Un modo completamente nuovo di gestire la macchina del Marketing, che demanda all’intelligenza artificiale il compito di seguire i clienti lungo i vari canali, lasciando alle risorse umane il ruolo più creativo e delicato: quello di costruire una relazione di fiducia.

PRIME365 Fashion Suite è una suite di prodotti basati su tecnologie Microsoft Dynamics ed Azure, disegnati per le aziende della moda in grado di accompagnarle nel percorso della digital transformation.

Team Marketing

AI e Moda

Moda e tecnologia non sempre appaiono correlate ma l’intelligenza artificiale sta permeando molti settori e le tendenze della moda non rimarranno immuni dai suoi effetti. Ecco perché l’intelligenza artificiale
(AI) non determinerà solo quello che acquisterete ma forse selezionerà anche quello che sceglierete dal vostro guardaroba.

Come l’AI potrebbe influenzare i futuri trend della moda

Non dobbiamo pensare all’AI solo come Intelligenza artificiale ma in termini di intelligenza “aumentata” in quanto essa può estendere il pensiero umano e la capacità creativa ed automatizzare ad esempio il riconoscimento automatico di mode, stili e tendenze mondane attraverso l’analisi di post ed articoli. La questione più appropriata diviene quindi non se l’AI possa prendere il posto dei nuovi designer ma in che aspetti li possa supportare ad essere più creativi grazie alle proprie capacità di analisi ed osservazione.

Questo ci porta quindi a pensare all’AI come uno strumento prima di tutto di aiuto su come fornire alle persone conoscenze e intuizioni che consentano loro di lavorare in modo più efficace o efficiente; per aiutarle a concentrarsi sul raggiungimento di un risultato e non sull’elenco delle attività; per lasciare il banale ad uno strumento tecnologico che eccelle nel banale e per amplificare quindi l’abilità cognitiva umana, sfruttando (aumentando) l’intelligenza con l’aiuto delle macchine, degli algoritmi e della potenza di elaborazione: questa è la vera missione dell’AI nel nostro millennio e da qui può partire una nuova rivoluzione per tutti i settori.

Custom Fit AI

In uno scenario in cui il cliente è al centro della strategia di ingaggio e dove l’estrema personalizzazione delle proposte è sempre più spinta grazie ad innovativi algoritmi in grado di creare campagne ad hoc, l’AI potrebbe offrire anche un valido supporto nel migliorare notevolmente le tecniche di analisi e definizione delle preferenze cambiando anche parte del retail. Il cliente infatti potrebbe andare in un negozio online e trovare i propri articoli preferiti sulla base delle esperienze di acquisto ed anche alcuni nuovi disegnati o personalizzati apposta per lui.

I disegni auto-generati potrebbero anche giocare un altro ruolo: la creatività dei designer continuerebbe ad essere il motore principale per il disegno delle nuove collezioni ma le proposte generate dall’intelligenza artificiale potrebbero coprire il gap tra la moda quotidiana ed i pezzi da sfilata attraverso la creazione di pezzi unici, personalizzati per il singolo cliente e derivati dai principali trends visti in sfilata, ma a prezzi molto più abbordabili.

Questo potrebbe anche aiutare i retailers a capire meglio i propri clienti e migliorare la qualità delle loro offerte rendendole flessibili e personalizzate su cluster sempre più ridotti.

Predictive Fashion

Con l’utilizzo di questo approccio supportato dall’AI, gli stilisti e le case di moda potrebbero cominciare a concepire le loro collezioni in un modo nuovo.

I retailer della moda conoscono il valore dei loro follower e rimanere sempre di tendenza non è semplice: l’intelligenza artificiale è in grado di analizzare molteplici settori e gruppi di consumatori, consentendogli di trasformare velocemente le proprie collezioni.

Il vantaggio dell’AI è che il sistema impara da solo e compie attività sempre più precise e puntali all’aumentare dei dati disponibili e della potenza di calcolo. I nuovi algoritmi si adattano e spingono l’intelligenza artificiale sempre più su terreni che prima erano presidio esclusivo degli esseri umani.

Aumentare produttività e creatività

Possiamo ritrovare i benefici dell’introduzione di modelli di AI nei processi del settore della moda in ogni singolo stadio della supply chain: aumento della velocità di esecuzione, minori costi di gestione e maggior flessibilità. l’Intelligenza Artificiale ha infatti il potenziale di guidare miglioramenti in aree come il forecasting, la pianificazione, il merchandising fino ad automazione e logistica. I consumatori ne beneficeranno godendosi prodotti con migliorata disponibilità e tempi di realizzazioni inferiori.

Può anche migliorare la creatività in quanto i leader dell’industria della moda stanno già utilizzandola per aumentare le capacità nel generare nuove combinazioni di stili per i propri prodotti basandosi su trend e su quello che i clienti dimostrano di preferire.

Se prendiamo ad esempio Amazon è sul punto di lanciare il primo servizio di preferenze di abbigliamento supportato da AI e per merito di questo algoritmo sarà in grado di analizzare immagine e replicare gli stili più popolari ed applicarli ai gusti personali di ogni singolo cliente.

Ma non è l’unico esempio perché molti stilisti ne stanno già integrando l’uso fin dalla creazione dei propri campionari e collezioni.

Collegare i clienti ed i bisogni

Ci sono già moltissimi esempi di applicazioni di AI nell’industria della moda e senza dubbio questa tecnologia ha il potere di ridisegnare il modo in cui il settore ingaggerà ed interagirà con i propri clienti.

I leader digitali del settore stanno già facendo progressi, assicurando una maggiore conoscenza dei clienti dai loro ricchi set di dati e perseguendo opportunità come raccomandazioni sui prodotti, prezzi dinamici ed una migliore gestione delle relazioni con i clienti. Su quest’ultimo ambito, Tommy Hilfiger ha creato ad esempio una chatbot per interagire con i potenziali clienti. Il bot, un programma per computer automatizzato che gestisce le conversazioni con persone vive basate su suggerimenti forniti basati sulle loro domande, offre risposte e contenuti su misura per i loro interessi.

Ma il potenziale dell’IA non si limita a trasformare l’esperienza del cliente online: la tecnologia può alimentare un coinvolgimento migliore anche nel negozio fisico. Alcune aziende della moda utilizzano sensori che forniscono dati ai loro strumenti di intelligenza artificiale tramite l’Internet of Things, consentendo loro di capire come migliorare l’esperienza in negozio.

Farfetch è un buon esempio di ciò che è possibile fare se consideriamo quanto ha di recente inserito nel suo concept di negozio del futuro: ha attivato infatti strumenti come il riconoscimento automatico dei clienti quando l’acquirente entra nel negozio, accessi ai camerini per i clienti abilitati alla tecnologia RFID per aumentare la gestione dell’inventario e supportare gli acquisti ed i mirror digitali che consentono ai clienti di confrontare combinazioni di diverse dimensioni, colori e stili. Utilizzando l’intelligenza artificiale, l’azienda è stata in grado di integrare molte delle esperienze offerte di routine ai clienti online anche quando sono effettivamente nel negozio fisico.

L’intelligenza artificiale può anche svolgere un ruolo chiave nell’assicurare ai rivenditori di disporre di riserve sufficienti degli articoli più richiesti creando un corretto bilanciamento nei canali. Gli strumenti basati sull’intelligenza artificiale per la previsione della domanda stanno facendo notevoli progressi in un aspetto molto critico per l’industria della moda che è quello di avere il prodotto giusto, nel negozio o canale più vicino al cliente al momento in cui lo stesso è più disposto a fare l’acquisto. Nei casi migliori, tali strumenti consentono ai rivenditori di ridurre gli errori di previsione fino al 50%, riducendo allo stesso tempo l’inventario dal 20% al 50%.

In conclusione: l’AI come imperativo dell’evoluzione

Con così tanti casi d’uso, le aziende della moda potrebbero aver bisogno di pensare alle loro priorità per l’intelligenza artificiale, concentrandosi sulle aree con il maggior potenziale di valore aggiunto data la loro strategia aziendale individuale. Con alcune ricerche che suggeriscono che l’intelligenza artificiale potrebbe sostituire fino al 30 percento del lavoro svolto dai fashion designer, in che modo le aziende gestiranno la loro forza lavoro e introdurranno nuovi strumenti senza alienare i dipendenti?

Il segreto sarà quello di sfruttare un valore che ha guidato ha lungo il successo nel settore della moda: la collaborazione. In pratica, gli strumenti di intelligenza artificiale sono in grado di supportare ed automatizzare gran parte del lavoro attualmente svolto dai stilisti, piuttosto che sostituirne completamente le creatività. E mentre alcuni compiti potrebbero scomparire, l’AI creerà anche nuove opportunità.

È possibile quindi prevedere il futuro della moda e quello che si affaccia con l’avvento dell’AI? La maggior parte dei film di fantascienza rappresentano un futuro della moda in cui l’umanità è vestita con costumi intelligenti, infusi dalla tecnologia, che quasi sempre danno a chi lo indossa una sorta di superpotere… potrebbe essere questo uno dei possibili futuri?

Un altro scenario è un futuro della moda non più afflitto dalla crudeltà sugli animali, dalla schiavitù moderna legata alla tecnologia, dall’esaurimento delle risorse e dall’inquinamento globale, dove l’unica minaccia alla nostra esistenza è una civiltà aliena malevola, mentre il resto del genere umano è riuscito a ritrovare un equilibrio tra tecnologia, ecologia e co-esistenza sul pianeta di tutte le specie.

Se tuttavia dobbiamo pensare a qualcosa di certo che sicuramente non cambierà mai, questa è la nostra natura umana: siamo permeati da insaziabile desiderio di segnalare lo stato, di mostrare “chi siamo”, distinguerci da tutti… e questo accade ancora oggi dopo milioni di anni di evoluzione.

Ecco perché prevedere il futuro della moda non è così semplice. La moda riguarda le persone e i loro pari, i costrutti sociali, la dimostrazione di chi siamo. La moda non riguarda gli ultimi progressi tecnologici, anche se questi la possono aiutare ad evolversi più velocemente… e poiché la nostra percezione del lusso è costruita sul patrimonio, sull’artigianato e sull’alta qualità, cosa succederà quando i robot sostituiranno gli artigiani e i paesi si dissolveranno in un paese senza confini globale?

In questo contesto, potrebbe quindi l’AI diventare il nuovo stilista del futuro?

Negli ultimi dieci anni, il mondo della moda è stato ridisegnato dalla rivoluzione digitale, per sostituire le pratiche centenarie con le meraviglie tecnologiche, i centri commerciali di moda con i colossi dell’e-commerce e i materiali tradizionali con alternative sostenibili innovative. L’aspetto della moda digitale è stato in qualche modo previsto da siti di incontri di avatar come “Second Life” e più recentemente dalla scena dei giochi online. Entrambe le comunità stanno spendendo miliardi di dollari per la moda e gli accessori che… non esistono!

Matthew Drinkwater, responsabile della Fashion Innovation Agency, è fermamente convinto in un futuro in cui il regno fisico sarà intriso di contenuti digitali, e prevede un domani in cui i consumatori saranno in grado di sovrapporre elementi digitali ai loro corpi e all’abbigliamento del mondo reale… in poche parole se possono convergere il negozio online e quello fisico, perché non dovrebbero farlo i consumatori ed i loro prodotti?

Una riflessione sull’etica

L’intelligenza Artificiale ha il grosso limite di essere ancora un sistema che apprende e recepisce il suo sviluppo dall’impronta umana. Se pensiamo di istruire un sistema a generare disegni e supportare gli stilisti nella creazione di nuove collezioni, appare importante anche considerare chi e come istruirà l’AI e che tipo di pregiudizi possa avere perché questo può influenzare le scelte dell’algoritmo ed i suoi risultati.

Avere un approccio etico ed inclusivo sarà parte della definizione delle regole di base per avere una vera AI in grado di supportare gli stilisti in tutto il mondo nel creare nuovi capi e collezioni declinate per i diversi paesi nel rispetto dei loro usi e preferenze locali.

PRIME365 Fashion Suite è una suite di prodotti basati su tecnologie Microsoft Dynamics ed Azure, disegnati per le aziende della moda in grado di accompagnarle nel percorso della digital transformation.

Team Marketing

Customer Care Chatbot

Come avere un assistente virtuale che avvicina e non allontana

Abbiamo già parlato di ChatBot e della loro progettazione: sappiamo che per poter sviluppare uno strumento di questo tipo ci vuole una progettazione logica e linguistica che non si improvvisa, oltre che un processo di training costante finalizzato ad ottimizzarne le performance.
Questi progetti, più di tutti, vivono sulla evoluzione e si alimentano della interazione con gli utenti.

Ma ad oggi quale può essere l’ambito di applicazione più “soddisfacente” per questa tecnologia?

Se si guardano i dati emessi dal report “Osservatorio Artificial Intelligence: Artificial Intelligence learn to fly” del Politecnico di Milano,  possiamo rilevare che  l’utilizzo dei chatbot in Italia nel 2020 è stato così suddiviso:

  • Customer Care (13%): servizio messo a disposizione dei clienti per fornire assistenza
  • Help-desk Interno (8%): fornisce risposte a specifici problemi (principalmente IT) dei dipendenti
  • Shop Assistant (6%): fornisce informazioni sui prodotti aziendali (caratteristiche, disponibilità, ecc.)
  • Corporate Knowledge (4%): fornisce informazioni circa l’azienda, la sua storia e l’organizzazione
  • Prodotto Finale (4%): è integrato all’interno di un prodotto, di cui costituisce una delle funzionalità
  • Recruiting (3%): effettua un primo screening dei candidati in un processo di selezione, ponendo ai candidati stessi domande e valutando le risposte
  • HR Management (3%): fornisce quelle informazioni normalmente in capo all’ufficio Risorse umane

L’applicazione del chatbot legato alla gestione del customer care è quindi la declinazione ad oggi più naturale, ma vediamo come potrebbe essere progettato un prodotto “vincente” e non “irritante”.

Ricordiamoci sempre che se una azienda decide di realizzare un chatbot per affiancare il customer care, lo scopo primario deve essere quello di erogare un servizio efficace e la riduzione dei costi interni è solo una conseguenza “indiretta” di questa strategia.

L’utente ormai sa benissimo di trovarsi di fronte ad un chatbot quando approccia la richiesta su un prodotto, quello che non sa è fino a che punto il robot può rispondere in maniera pertinente.
Per questo la prima cosa da fare è:

Far capire all’utente gli argomenti che può trattare lo strumento

Una volta esplicitati gli argomenti, il fruitore del servizio deve poter chiedere quello che gli serve, ma in che modo? le strade possono non essere univoche, navigando tramite un menu contestuale oppure scrivendo in esplicito la richiesta. Quello che è fondamentale è che l’utente possa:

Carpire come interagire con il chatbot in maniera immediata

Essendo il customer care finalizzato appunto alla “cura del cliente”, bisogna soddisfare le esigenze dei consumatori il più possibile, quindi se un utente preferisce parlare con un operatore, bisogna rendere la scalabilità immediata: se un operatore è disponibile, dare la possibilità di richiedere un contatto, se non lo fosse dare il modo di fissare un appuntamento telefonico per agevolare la comunicazione

Permettere una scalabilità verso l’operatore umano in maniera semplice

Dopo l’utilizzo del chatbot, un utente deve esserne soddisfatto, sia se è riuscito a risolvere il suo problema, sia se si è tranquillizzato con un potenziale contatto. L’esperienza d’uso deve essere percepita come positiva e questo dovrebbe essere uno strumento abilitante e non “una presa di distanza”.
Purtroppo spesso i chatbot sono progettati quasi a voler allontanare il più possibile il contatto umano: questo è bene solo se le richieste vengono soddisfatte, diversamente è controproducente e rendono ancora più sterile il contatto con i propri clienti.

Noi cerchiamo sempre di avere chiari gli obiettivi di businness e tramite gli strumenti Microsoft, come l’infrastruttura public cloud Azure e le applicazioni utilizzate per la gestione del linguaggio come luis  e qnmaker,  possiamo  addestrare il chatbot come meglio desideriamo.

La disponibilità dei servizi cognitivi di Microsoft e di soluzioni e logiche è in continua evoluzione  per questa tipologia di prodotti che certamente necessitano di crescita: non possiamo sapere come cambieranno, ma ci aspettiamo una decisa presenza sul mercato visto anche gli ultimi fatti mondiali.

Noi siamo presenti per aiutarvi ad esplorare il meraviglioso viaggio del domani.

Scopri heybot, il chatbot conversazionale che dialoga direttamente con i tuoi clienti e con i tuoi partner, risponde 24/7 alle Q&A dei tuoi utenti in modo proattivo fornendo informazioni dettagliate.

 

Modern Workplace Consultant

pianificazione della domanda

Le aziende di alcuni settori industriali, ad esempio il manifatturiero, il consumer product goods, il fashion e il retail devono affrontare periodicamente il processo di pianificazione della domanda, in diversi scenari che possono riguardare la produzione, il replenishment o la distribuzione.

L’esigenza di business e le sfide sottese a questo processo sono molto chiare, e riguardano la capacità di prevedere i volumi e anticipare le criticità evitando rotture di stock piuttosto che l’immobilizzazione in quantità eccessive di prodotti e componenti.

I fattori che entrano in campo nelle decisioni sono infatti molteplici e includono variabili stagionali, collezioni, caratteristiche di approvvigionamento delle materie prime, differenti mercati, e interazioni complesse, come ad esempio avviene nel caso di promozioni, sostituzioni, e nuovi lanci di prodotto.

Penso di non sbagliare troppo dicendo che, ancora oggi, lo strumento per la pianificazione della domanda piu’ diffuso è… Microsoft Excel.

Quella della pianificazione è infatti una attività che, nonostante la presenza di ERP moderni, implica ancora una forte manualità e in alcune circostanze si basa sull’esperienza piuttosto che su metodologie scientifiche e algoritmi robusti.

L’Intelligenza Artificiale può portare ad un significativo miglioramento di questo scenario.

I servizi Azure Machine Learning possono infatti implementare modelli per l’analisi per dati non lineari, i quali si possono affiancare ad algoritmi più classici, per un miglioramento rilevante dell’accuratezza nella previsione, a livello di singola referenza (SKU).

Non ridurrei però la questione alla parte più algoritmica.

Sono infatti diversi i fattori che non è possibile demandare al motore di calcolo e una buona soluzione deve prevedere le modalità per tenere sotto controllo le diverse dimensioni (giacenze di magazzino, ordinativi, previsioni etc) e per intervenire manualmente in caso di “shock” o altri eventi che non possono essere anticipati.

L’approccio al miglioramento nel processo di pianificazione della domanda deve quindi coniugare le capacità di calcolo con la governance e la semplicità d’uso.

In conclusione grazie all’intelligenza artificiale è possibile migliorare rapidamente l’accuratezza delle previsioni e grazie alla tecnologia si può impostare il “pilota automatico” nel trasferimento della pianificazione all’ERP con grandi benefici per l’efficienza del processo.

Tuttavia l’intervento dei demand planner resta fondamentale per quegli aspetti dove il contributo di esperienza e conoscenza dell’azienda è maggiormente necessario.

I dati e l’intelligenza artificiale per la loro elaborazione rendono disponibili alle imprese nuovi modi per migliorare i processi e generare valore

CEO – Amministratore Delegato